Three quick questions I couldn’t work out from the docs:

Is it correct to use a.params (for a = Empirical(…)) to get the tensor of samples of an Empirical distribution after inference? If so, what order are they in? I was going to implement burn in by dropping, say, the first quarter of the samples, but are these at the top or bottom of the array of samples?

I tried using a mixture variable (a categorical distribution over gaussians) in my model  but as the categorical distribution got large (e.g. 1000 elements in the support), it got way too slow to run. It seems that it was making the tensorflow graph way too large, so I’ve rewritten the mixture explicitly, in a vectorized form. Is this my best option?

HMC supports joint inference, right? I’m trying to do joint inference to calculate a posterior on two Gaussian priors, but am not having too much success. Should I lower the step size of HMC?
Thanks again  Edward has been pretty invaluable for this project!