Topic modelling


I would like to compare between different bayesian topic models such as LDA with seeding, hierarchical, hidden markov topic modeling, gaussian hmm on sentence embedding etc. I look for a platform for implementing these varients. Is there past experience on topic modeling using Edward in the community? An LDA example would be useful with Gibbs sampling.

Implementing mixed membership models

I added an example in the Github repo, examples/, which is one of the state of the art for topic modeling. You might try to build from that code.

Alternatively if you’re into classics, you can build LDA + collapsed Gibbs by extending examples/